红黑树的应用
Java 中,TreeMap、TreeSet 都使用红黑树作为底层数据结构
JDK 1.8 开始,HashMap 也引入了红黑树:当冲突的链表长度超过 8 时,自动转为红黑树
Linux 底层的 CFS 进程调度算法中,vruntime 使用红黑树进行存储。
多路复用技术的 Epoll,其核心结构是红黑树 + 双向链表。
满足一个树是红黑树条件:
一棵典型的红黑树,如图 1.1 所示
对于这种情况又可以分为以下 3 中小的情况考虑
1.叔叔节点是黑色(null 节点也是黑色),插入到左子树中
2.叔叔节点是黑色(null 节点也是黑色),插入到右子树中
3.叔叔节点是红色
这种情况也可以分为以下 3 中小的情况考虑
1。叔叔节点是黑色,插入到右子树中
2.叔叔节点是黑色,插入到右子树中。
3.叔叔节点是红色。
只看这些图绝对看不懂红黑树,结合代码就要简单些了
个人感觉只把 node 的父节点是左子节点这一条线的三种情况背下来就行了,面试的时候就说剩下的差不多就行了吧。
#友情提醒,相对于插入,删除操作则更加复杂#
在插入操作中,通过判断插入结点的叔叔结点的颜色来确定恰当的平衡操作。而删除操作中,是通过检查兄弟结点的颜色来决定恰当的平衡操作。
红黑树中插入一个结点最容易出现两个连续的红色结点,违背红黑树的性质 3(红黑树中不存在两个相邻的红色结点)。而删除操作,最容易造成子树黑高(Black Height)的变化(删除黑色结点可能导致根结点到叶结点黑色结点的数目减少,即黑高降低)
与插入操作相比,红黑树的删除操作相对复杂一点,但多点儿耐心,还是没有问题的。为了理解删除操作,我们先来看一个 双黑(Double Black) 的概念
当删除结点 v 是黑色结点,且其被其黑色子节点 a(null 节点也算黑色子节点)替换时,其黑色子结点 a 就被标记为 双黑
删除到此为止,防止脑溢血
package com.example.practical_demo.RedBlackTree;
public enum Color {
Black("黑色"), Red("红色");
private String color;
private Color(String color) {
this.color = color;
}
@Override
public String toString() {
return color;
}
}
package com.example.practical_demo.RedBlackTree;
public class Node {
public int key;
public Color color;
public Node left;
public Node right;
public Node parent;
public Node() {
}
public Node(Color color) {
this.color = color;
}
public Node(int key) {
this.key = key;
this.color = Color.Red;
}
/**
* 求在树中节点的高度
*
* @return
*/
public int height() {
return Math.max(left != RedBlackTree.NULL ? left.height() : 0, right != RedBlackTree.NULL ? right.height() : 0) + 1;
}
/**
* 在以该节点为根节点的树中,求最小节点
*
* @return
*/
public Node minimum() {
Node pointer = this;
while (pointer.left != RedBlackTree.NULL)
pointer = pointer.left;
return pointer;
}
@Override
public String toString() {
String position = "null";
if (this.parent != RedBlackTree.NULL)
position = this.parent.left == this ? "left" : "right";
return "[key: " + key + ", color: " + color + ", parent: " + parent.key + ", position: " + position + "]";
}
}
package com.example.practical_demo.RedBlackTree;
import java.util.LinkedList;
import java.util.Queue;
public class RedBlackTree {
public final static Node NULL = new Node(Color.Black);
public Node root;
public RedBlackTree() {
this.root = NULL;
}
/**
* 左旋转
*
* @param node
*/
public void leftRotate(Node node) {
Node rightNode = node.right;
node.right = rightNode.left;
if (rightNode.left != RedBlackTree.NULL)
rightNode.left.parent = node;
rightNode.parent = node.parent;
if (node.parent == RedBlackTree.NULL)
this.root = rightNode;
else if (node.parent.left == node)
node.parent.left = rightNode;
else
node.parent.right = rightNode;
rightNode.left = node;
node.parent = rightNode;
}
/**
* 右旋转
*
* @param node
*/
public void rightRotate(Node node) {
Node leftNode = node.left;
node.left = leftNode.right;
if (leftNode.right != RedBlackTree.NULL)
leftNode.right.parent = node;
leftNode.parent = node.parent;
if (node.parent == RedBlackTree.NULL) {
this.root = leftNode;
} else if (node.parent.left == node) {
node.parent.left = leftNode;
} else {
node.parent.right = leftNode;
}
leftNode.right = node;
node.parent = leftNode;
}
public void insert(Node node) {
//null节点
Node parentPointer = RedBlackTree.NULL;
//根节点
Node pointer = this.root;
//遍历寻找node的父节点
while (pointer != RedBlackTree.NULL) {
parentPointer = pointer;
pointer = node.key < pointer.key ? pointer.left : pointer.right;
}
//为node节点设置父节点
node.parent = parentPointer;
//看node节点是放在左子树还是右子树
if (parentPointer == RedBlackTree.NULL) {
this.root = node;
} else if (node.key < parentPointer.key) {
parentPointer.left = node;
} else {
parentPointer.right = node;
}
//新node节点的子节点是两个null节点,并且新node节点的颜色是红色
node.left = RedBlackTree.NULL;
node.right = RedBlackTree.NULL;
node.color = Color.Red;
//平衡修复红黑树
this.insertFixUp(node);
}
/**
* 平衡修复
* @param node
*/
private void insertFixUp(Node node) {
// 当node不是根结点,且node的父节点颜色为红色
while (node.parent.color == Color.Red) {
// 先判断node的父节点是左子节点,还是右子节点,这不同的情况,解决方案也会不同
if (node.parent == node.parent.parent.left) {
Node uncleNode = node.parent.parent.right;
if (uncleNode.color == Color.Red) { // 如果叔叔节点是红色,则父父一定是黑色
// 通过把父父节点变成红色,父节点和兄弟节点变成黑色,然后在判断父父节点的颜色是否合适
uncleNode.color = Color.Black;
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
node = node.parent.parent;
} else if (node == node.parent.right) { // node是其父节点的右子节点,且叔叔节点是黑色
// 对node的父节点进行左旋转
node = node.parent;
this.leftRotate(node);
} else { // node如果叔叔节点是黑色,node是其父节点的左子节点,父父节点是黑色
// 把父节点变成黑色,父父节点变成红色,对父父节点进行右旋转
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
this.rightRotate(node.parent.parent);
}
} else {
Node uncleNode = node.parent.parent.left;
if (uncleNode.color == Color.Red) {
uncleNode.color = Color.Black;
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
node = node.parent.parent;
} else if (node == node.parent.left) {
node = node.parent;
this.rightRotate(node);
} else {
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
this.leftRotate(node.parent.parent);
}
}
}
// 如果之前树中没有节点,那么新加入的点就成了新结点,而新插入的结点都是红色的,所以需要修改。
this.root.color = Color.Black;
}
/**
* n2替代n1
*
* @param n1
* @param n2
*/
private void transplant(Node n1, Node n2) {
if (n1.parent == RedBlackTree.NULL) { // 如果n1是根节点
this.root = n2;
} else if (n1.parent.left == n1) { // 如果n1是其父节点的左子节点
n1.parent.left = n2;
} else { // 如果n1是其父节点的右子节点
n1.parent.right = n2;
}
n2.parent = n1.parent;
}
/**
* 删除节点node
*
* @param node
*/
public void delete(Node node) {
Node pointer1 = node;
// 用于记录被删除的颜色,如果是红色,可以不用管,但如果是黑色,可能会破坏红黑树的属性
Color pointerOriginColor = pointer1.color;
// 用于记录问题的出现点
Node pointer2;
if (node.left == RedBlackTree.NULL) {
pointer2 = node.right;
this.transplant(node, node.right);
} else if (node.right == RedBlackTree.NULL) {
pointer2 = node.left;
this.transplant(node, node.left);
} else {
// 如要删除的字节有两个子节点,则找到其直接后继(右子树最小值),直接后继节点没有非空左子节点。
pointer1 = node.right.minimum();
// 记录直接后继的颜色和其右子节点
pointerOriginColor = pointer1.color;
pointer2 = pointer1.right;
// 如果其直接后继是node的右子节点,不用进行处理
if (pointer1.parent == node) {
pointer2.parent = pointer1;
} else {
// 否则,先把直接后继从树中提取出来,用来替换node
this.transplant(pointer1, pointer1.right);
pointer1.right = node.right;
pointer1.right.parent = pointer1;
}
// 用node的直接后继替换node,继承node的颜色
this.transplant(node, pointer1);
pointer1.left = node.left;
pointer1.left.parent = pointer1;
pointer1.color = node.color;
}
if (pointerOriginColor == Color.Black) {
this.deleteFixUp(pointer2);
}
}
/**
* The procedure RB-DELETE-FIXUP restores properties 1, 2, and 4
*
* @param node
*/
private void deleteFixUp(Node node) {
// 如果node不是根节点,且是黑色
while (node != this.root && node.color == Color.Black) {
// 如果node是其父节点的左子节点
if (node == node.parent.left) {
// 记录node的兄弟节点
Node pointer1 = node.parent.right;
// 如果node兄弟节点是红色
if (pointer1.color == Color.Red) {
pointer1.color = Color.Black;
node.parent.color = Color.Red;
leftRotate(node.parent);
pointer1 = node.parent.right;
}
if (pointer1.left.color == Color.Black && pointer1.right.color == Color.Black) {
pointer1.color = Color.Red;
node = node.parent;
} else if (pointer1.right.color == Color.Black) {
pointer1.left.color = Color.Black;
pointer1.color = Color.Red;
rightRotate(pointer1);
pointer1 = node.parent.right;
} else {
pointer1.color = node.parent.color;
node.parent.color = Color.Black;
pointer1.right.color = Color.Black;
leftRotate(node.parent);
node = this.root;
}
} else {
// 记录node的兄弟节点
Node pointer1 = node.parent.left;
// 如果他兄弟节点是红色
if (pointer1.color == Color.Red) {
pointer1.color = Color.Black;
node.parent.color = Color.Red;
rightRotate(node.parent);
pointer1 = node.parent.left;
}
if (pointer1.right.color == Color.Black && pointer1.left.color == Color.Black) {
pointer1.color = Color.Red;
node = node.parent;
} else if (pointer1.left.color == Color.Black) {
pointer1.right.color = Color.Black;
pointer1.color = Color.Red;
leftRotate(pointer1);
pointer1 = node.parent.left;
} else {
pointer1.color = node.parent.color;
node.parent.color = Color.Black;
pointer1.left.color = Color.Black;
rightRotate(node.parent);
node = this.root;
}
}
}
node.color = Color.Black;
}
private void innerWalk(Node node) {
if (node != NULL) {
innerWalk(node.left);
System.out.println(node);
innerWalk(node.right);
}
}
/**
* 中序遍历
*/
public void innerWalk() {
this.innerWalk(this.root);
}
/**
* 层次遍历
*/
public void print() {
Queue<Node> queue = new LinkedList<>();
queue.add(this.root);
while (!queue.isEmpty()) {
Node temp = queue.poll();
System.out.println(temp);
if (temp.left != NULL)
queue.add(temp.left);
if (temp.right != NULL)
queue.add(temp.right);
}
}
// 查找
public Node search(int key) {
Node pointer = this.root;
while (pointer != NULL && pointer.key != key) {
pointer = pointer.key < key ? pointer.right : pointer.left;
}
return pointer;
}
}
package com.example.practical_demo.RedBlackTree;
import java.util.LinkedList;
import java.util.Queue;
public class RedBlackTree {
public final static Node NULL = new Node(Color.Black);
public Node root;
public RedBlackTree() {
this.root = NULL;
}
/**
* 左旋转
*
* @param node
*/
public void leftRotate(Node node) {
Node rightNode = node.right;
node.right = rightNode.left;
if (rightNode.left != RedBlackTree.NULL)
rightNode.left.parent = node;
rightNode.parent = node.parent;
if (node.parent == RedBlackTree.NULL)
this.root = rightNode;
else if (node.parent.left == node)
node.parent.left = rightNode;
else
node.parent.right = rightNode;
rightNode.left = node;
node.parent = rightNode;
}
/**
* 右旋转
*
* @param node
*/
public void rightRotate(Node node) {
Node leftNode = node.left;
node.left = leftNode.right;
if (leftNode.right != RedBlackTree.NULL)
leftNode.right.parent = node;
leftNode.parent = node.parent;
if (node.parent == RedBlackTree.NULL) {
this.root = leftNode;
} else if (node.parent.left == node) {
node.parent.left = leftNode;
} else {
node.parent.right = leftNode;
}
leftNode.right = node;
node.parent = leftNode;
}
public void insert(Node node) {
//null节点
Node parentPointer = RedBlackTree.NULL;
//根节点
Node pointer = this.root;
//遍历寻找node的父节点
while (pointer != RedBlackTree.NULL) {
parentPointer = pointer;
pointer = node.key < pointer.key ? pointer.left : pointer.right;
}
//为node节点设置父节点
node.parent = parentPointer;
//看node节点是放在左子树还是右子树
if (parentPointer == RedBlackTree.NULL) {
this.root = node;
} else if (node.key < parentPointer.key) {
parentPointer.left = node;
} else {
parentPointer.right = node;
}
//新node节点的子节点是两个null节点,并且新node节点的颜色是红色
node.left = RedBlackTree.NULL;
node.right = RedBlackTree.NULL;
node.color = Color.Red;
//平衡修复红黑树
this.insertFixUp(node);
}
/**
* 平衡修复
* @param node
*/
private void insertFixUp(Node node) {
// 当node不是根结点,且node的父节点颜色为红色
while (node.parent.color == Color.Red) {
// 先判断node的父节点是左子节点,还是右子节点,这不同的情况,解决方案也会不同
if (node.parent == node.parent.parent.left) {
Node uncleNode = node.parent.parent.right;
if (uncleNode.color == Color.Red) { // 如果叔叔节点是红色,则父父一定是黑色
// 通过把父父节点变成红色,父节点和兄弟节点变成黑色,然后在判断父父节点的颜色是否合适
uncleNode.color = Color.Black;
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
node = node.parent.parent;
} else if (node == node.parent.right) { // node是其父节点的右子节点,且叔叔节点是黑色
// 对node的父节点进行左旋转
node = node.parent;
this.leftRotate(node);
} else { // node如果叔叔节点是黑色,node是其父节点的左子节点,父父节点是黑色
// 把父节点变成黑色,父父节点变成红色,对父父节点进行右旋转
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
this.rightRotate(node.parent.parent);
}
} else {
Node uncleNode = node.parent.parent.left;
if (uncleNode.color == Color.Red) {
uncleNode.color = Color.Black;
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
node = node.parent.parent;
} else if (node == node.parent.left) {
node = node.parent;
this.rightRotate(node);
} else {
node.parent.color = Color.Black;
node.parent.parent.color = Color.Red;
this.leftRotate(node.parent.parent);
}
}
}
// 如果之前树中没有节点,那么新加入的点就成了新结点,而新插入的结点都是红色的,所以需要修改。
this.root.color = Color.Black;
}
/**
* n2替代n1
*
* @param n1
* @param n2
*/
private void transplant(Node n1, Node n2) {
if (n1.parent == RedBlackTree.NULL) { // 如果n1是根节点
this.root = n2;
} else if (n1.parent.left == n1) { // 如果n1是其父节点的左子节点
n1.parent.left = n2;
} else { // 如果n1是其父节点的右子节点
n1.parent.right = n2;
}
n2.parent = n1.parent;
}
/**
* 删除节点node
*
* @param node
*/
public void delete(Node node) {
Node pointer1 = node;
// 用于记录被删除的颜色,如果是红色,可以不用管,但如果是黑色,可能会破坏红黑树的属性
Color pointerOriginColor = pointer1.color;
// 用于记录问题的出现点
Node pointer2;
if (node.left == RedBlackTree.NULL) {
pointer2 = node.right;
this.transplant(node, node.right);
} else if (node.right == RedBlackTree.NULL) {
pointer2 = node.left;
this.transplant(node, node.left);
} else {
// 如要删除的字节有两个子节点,则找到其直接后继(右子树最小值),直接后继节点没有非空左子节点。
pointer1 = node.right.minimum();
// 记录直接后继的颜色和其右子节点
pointerOriginColor = pointer1.color;
pointer2 = pointer1.right;
// 如果其直接后继是node的右子节点,不用进行处理
if (pointer1.parent == node) {
pointer2.parent = pointer1;
} else {
// 否则,先把直接后继从树中提取出来,用来替换node
this.transplant(pointer1, pointer1.right);
pointer1.right = node.right;
pointer1.right.parent = pointer1;
}
// 用node的直接后继替换node,继承node的颜色
this.transplant(node, pointer1);
pointer1.left = node.left;
pointer1.left.parent = pointer1;
pointer1.color = node.color;
}
if (pointerOriginColor == Color.Black) {
this.deleteFixUp(pointer2);
}
}
/**
* The procedure RB-DELETE-FIXUP restores properties 1, 2, and 4
*
* @param node
*/
private void deleteFixUp(Node node) {
// 如果node不是根节点,且是黑色
while (node != this.root && node.color == Color.Black) {
// 如果node是其父节点的左子节点
if (node == node.parent.left) {
// 记录node的兄弟节点
Node pointer1 = node.parent.right;
// 如果node兄弟节点是红色
if (pointer1.color == Color.Red) {
pointer1.color = Color.Black;
node.parent.color = Color.Red;
leftRotate(node.parent);
pointer1 = node.parent.right;
}
if (pointer1.left.color == Color.Black && pointer1.right.color == Color.Black) {
pointer1.color = Color.Red;
node = node.parent;
} else if (pointer1.right.color == Color.Black) {
pointer1.left.color = Color.Black;
pointer1.color = Color.Red;
rightRotate(pointer1);
pointer1 = node.parent.right;
} else {
pointer1.color = node.parent.color;
node.parent.color = Color.Black;
pointer1.right.color = Color.Black;
leftRotate(node.parent);
node = this.root;
}
} else {
// 记录node的兄弟节点
Node pointer1 = node.parent.left;
// 如果他兄弟节点是红色
if (pointer1.color == Color.Red) {
pointer1.color = Color.Black;
node.parent.color = Color.Red;
rightRotate(node.parent);
pointer1 = node.parent.left;
}
if (pointer1.right.color == Color.Black && pointer1.left.color == Color.Black) {
pointer1.color = Color.Red;
node = node.parent;
} else if (pointer1.left.color == Color.Black) {
pointer1.right.color = Color.Black;
pointer1.color = Color.Red;
leftRotate(pointer1);
pointer1 = node.parent.left;
} else {
pointer1.color = node.parent.color;
node.parent.color = Color.Black;
pointer1.left.color = Color.Black;
rightRotate(node.parent);
node = this.root;
}
}
}
node.color = Color.Black;
}
private void innerWalk(Node node) {
if (node != NULL) {
innerWalk(node.left);
System.out.println(node);
innerWalk(node.right);
}
}
/**
* 中序遍历
*/
public void innerWalk() {
this.innerWalk(this.root);
}
/**
* 层次遍历
*/
public void print() {
Queue<Node> queue = new LinkedList<>();
queue.add(this.root);
while (!queue.isEmpty()) {
Node temp = queue.poll();
System.out.println(temp);
if (temp.left != NULL)
queue.add(temp.left);
if (temp.right != NULL)
queue.add(temp.right);
}
}
// 查找
public Node search(int key) {
Node pointer = this.root;
while (pointer != NULL && pointer.key != key) {
pointer = pointer.key < key ? pointer.right : pointer.left;
}
return pointer;
}
}
package com.example.practical_demo.RedBlackTree;
public class Test01 {
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5, 6, 7, 8 };
RedBlackTree redBlackTree = new RedBlackTree();
for (int i = 0; i < arr.length; i++) {
redBlackTree.insert(new Node(arr[i]));
}
System.out.println("树的高度: " + redBlackTree.root.height());
System.out.println("左子树的高度: " + redBlackTree.root.left.height());
System.out.println("右子树的高度: " + redBlackTree.root.right.height());
System.out.println("层次遍历");
redBlackTree.print();
// 要删除节点
Node node = redBlackTree.search(4);
redBlackTree.delete(node);
System.out.println("树的高度: " + redBlackTree.root.height());
System.out.println("左子树的高度: " + redBlackTree.root.left.height());
System.out.println("右子树的高度: " + redBlackTree.root.right.height());
System.out.println("层次遍历");
redBlackTree.print();
}
}
首先红黑树是不符合 AVL 树的平衡条件的,即每个节点的左子树和右子树的高度最多差 1 的二叉查找树。但是提出了为节点增加颜色,红黑是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决,而 AVL 是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多。所以红黑树的插入效率更高!!!
所以简单说,如果你的应用中,搜索的次数远远大于插入和删除,那么选择 AVL,如果搜索,插入删除次数几乎差不多,应该选择 RB。